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In many studies [1-7], heat transfer in flows past solid bodies with a sharp variation 
in boundary conditions was analyzed with a priori specification of surface temperature or 
heat flux as a Step or sinusoidal function. Factors causing such a variation in boundary con- 

ditions were not taken into consideration. Hence it is more Comprehensive to consider a prob- 
lem with heat transfer in the solid body, i.e., as a conjugate problem. Thus, in [8, 9] the 
conjugate problem considered the effect on body surface temperature and the coefficient of 
heat transfer in boundary layer with segmented blowing, whereas in [9], the problem was con- 
sidered nonstationary. The present paper uses the finite-difference method to Study the ef- 
fect of sudden change in thermal properties of the flat plate in the streamwise direction on 
the unsteady heat transfer characteristics of the surrounding fluid. 

I. Formulation of the Problem. At the time just preceding the initial moment (t < 0), 
let the flat plate of length L and thickness 2b have temperature To different from the free 
stream temperature T~. Coordinates x and y are along and perpendicular to the plate. For 

simplicity, consider that the plate consists of two sections along the flow direction with 
different thermal characteristics. Ideal thermal contact of segments is assumed. Unsteadi- 

ness is due to instantaneous introduction of the plate in the flow at t = 0. Since the prob- 
lem is symmetric relative to the plane y = --b, it is sufficient to consider a plate with 
thickness b, whose outer surface is insulated. The following assumptions are made: incom- 
pressible flow-- thermal properties of the fluid and the plate do not depend on temperature; 
!aminar flow -- the plate is sufficiently thin so that the temperature gradient across the 

plate is negligible. 

Nondimensional equations of the problem have the following form: 

O~ + (Pr ~6 -~ B~6p6~)O~ -- 2 Pr ~ ~60~ = B~620~; (i.i) 

0 = Oo = O, t : O ,  0 ~ 1 ,  O ~ p ~ l ;  (1.2) 

0 : O~ = 0 ,  t > O ,  ~ = 0 ,  0 ~ t ;  (1 .3)  

O =  0 = 0 ,  t > O ,  0 ~ < ~ < I ,  ~ =  t; (1.4) 

o = o~(~, J ,  ~ > o ,  o ~  ~ i, ~ = o; (1.5) 

00~ 6 ( OOw] T~-~/~ t {oO] ; (1.6) 
e~~ (~) ~ = ~ ~ (~) - ~ / +  Z- ~ ; ~ = o  

OOw 
~ (~) ~ = B~.O~, t > O, ~ = O; (1 .7)  

aO w 
%w(~)-~-~ =Bi~@~, z > O ,  $ = 1 ;  (1 .8)  

/ ~1,  0 ~ < ~ < ~ * ,  fops1, 0 < ~ < ~ * ,  

(1.9) 

(i.io) 

Here r = (T -- T~)/(To -- T~); @~ = (T w -- T~)/(To -- T~); ~ = x/L~ U : ~/~(T); ~ = 0.5y#U~/~x; 
T = a't/L2; Re = U~L/~; Pr = ~Tcj; ~ = 0.5(L/b)(If/l*)#Ree; B = 4(a*/af)Re-Z; Bi = aL/%*; 5(T) 
is the nondimensional thermal boundary-layer thickness determined from the condition of 
smooth transition of temperature at the outer edge of the boundary layer, which has the fol- 
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lowing form 

l l o o  
1~-~ ~ ,  o < ~ < 1 , ~ = 1 .  (i.ii) 

The indices denote the following f, fluid parameters: 0, initial conditions; H and K, param- 
eters when ~ = 0 and ~ = i, respectively: w, plate parameters; ~, free stream parameters; 
*, reference value of the parameters; 1 and 2, parameters at each section of the plate; n, r 
T indicate differentiation with respect to the respective variables. The stream function 
and its derivatives are determined from the solution to the Blasius problem [I0]. The vari- 
able ~ is used to ensure automatic increase in the grid time interval along the coordinate n 
for a constant number of grid points but in so doing the value of 6(7) and its time deriva- 
tive should be corrected at each time interval [ii]. 

2. Finite-Difference Equations. The boundary-value problem (i.i)-(i.ii) is approximated 
by the following finite-difference scheme: 

A A j+i C AJ+i R ~+~ --**m,n~m,n--1 -~- m , n ~ m , n -  ~ m , n V m , n + l  ~ Fm,~;  

0 )+~ O (~176 0; 

@J+~ 0 (~176 0; 
m , N  = 

@~+1 O(~)j+~; 
"ffGO = 

o = ~(o)  0; 

A(w)A(w)J+I {~(W)(L~(w)J§ ]~(w)A(w)j+l i T)(w)(AJ+I 01uJ)J -I) = F(mW); 
- -  * ~ r n  ~m--i ~- ~ m  " d i n  - - ~ r n  ~ r n + l  T ~ m  \ ~ m , 1 - -  

0 ~  ~)~ = e ( 3  ~ = t ;  

@(~)J+~ . ~(~ov+: 0 ~ xu ~ I; 

p~i+l u~/+l lc~5+~ 88J+1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2,5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The coefficients in Eqs. (2.1) and (2.6) and boundary conditions (2.8)-(2.10) are deter- 
mined by the requirements (approximation, stability, homogeneity, etc.) of the finite differ- 
ence scheme. For our purpose, it is convenient to use homogeneous, implicit difference 
scheme satisfying conservative and monotonic laws. 

Indices m, n, and j in Eqs. (2.1)-(2.10) indicate grid points in the ~, n, and r direc- 
tions, respectively; M = max (m), N = max (n). 

3. Solution to Finite-Difference Equations. The system of difference equations (2.1)- 
(2.10) has such a form that a direct application of the usual marching technique does not 
appear to be possible to solve and thermodynamic equilibrium equations cannot be solved in- 
dependently, and, secondly, the initial-value problem is solved along ~ for the energy equa- 
tion, whereas the boundary-value problem is solved for thermodynamic equilibrium. 

In order to solve the system of difference equations of the type (2.1)-(2.10), Sapelkin 
[12] suggested the method of streamwise-normal marching, whose characteristic feature is the 
computation of streamwise (along index m) marching parameters using normal (along the index 
n) marching coefficients. 

In order to solve the given problem, a modification of the algorithm given in [12] was 
used, because the thermal properties of each plate segment could vary over a wide range. In 
this case, streamwise variant [13] of streamwise marching was used to improve accuracy. 
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4. Computational Results. The algorithm was programmed in FORTRAN and series of compu- 
tations were carried out on a BESM-6 computer. Verification of the algorithm and the choice 
of parameters for the difference scheme were made using the solution to the conjugate prob- 
lem of steady heat transfer in a laminar boundary layer on a solid flat plate whose surface 
is maintained at a constant temperature [14]. Figure 1 shows computed results (solid curves) 
and data from [14] (circles). The following parameters were chosen: Pr = 1.0, @w(0) = @w(1) = 

0.5, y = i0.0 (curve I), y = 5.0 (curve 2), ~ = 2.0 (curve 3). It is seen that for a wide 
range of these conjugate parameter y results are practically identical; the difference does 

not exceed 1%. 

Computed results for the given boundary-value problem are shown in Figs. 2-4. Computa- 
tions were carried out for four plates consisting of two segments along the flow: N~ made of 
copper-steel; ~2, steel-copper; and also for fully copper ~3 (X = 395 W/m-~ cp = 3.4"106 

J/m~-~K) and steel ~4 (X = 53 W/m'~ cp = 3.95"106 J/m3"~ plates (curves 1-4). The plate 
length was L = 1 m, half-thickness b = 0.01 m. The free stream parameters were Re = i000 and 
Pr = 0.688. Values corresponding to the properties of copper were taken as reference quan- 

tities: B = 0.01375 and y = 0.1281. It was assumed that the left cover of the plate instan- 
taneously attains the free stream temperature, Bi H = ~, and the right segment is heat insulated 

Bi K = 0. 

Figure 2 shows the temperature distribution on the plate along its length at different 
moments in time: m = 0.0519 (dashed-dotted line), T = 0.3014 (solid lines), and m = 1.1821 
(dashed lines). The characteristic feature of the temperature distribution along the seg- 
mented plates Z~ and Z2 is the break in curves at the point of contact of the segments ({ = 
~* = 0.5). Analogous curves for solid plates Z3 and [4 are monotonic. 

Variation in relative local heat transfer coefficient with time for ~ = 0.4 (solid 
curves) and ~ = 0.6 (dashed lines) is shown in Fig. 3. The reference scale is the heat-trans- 

fer coefficient at constant surface temperature [i0]. 

~*X/Zs = 0.332 Re~ "5 Pr  ~ 

Curves for the variation in heat transfer coefficient have a minimum whose value (~/~*)min 
and the corresponding time mmi n depend on the coordinate r and thermal properties of the plate. 
Such a behavior of the unsteady heat-transfer coefficient was earlier observed theoretically 
as well as experimentally for free and forced convection in [12, 15-17]. This is associated 
with the fact that at the initial stages the dominating influence on heat transfer between the 
fluid and the solid body is due to thermal conductivity (the left branch of curves relative to 
the minimum) and at large times it is due to forced convection (right branch of the curves) 
and later still its effect is realized farther downstream of the given point. This explains 

that with an increase in r there is an increase in mmi n but a decrease in (~/~*)min" The 
value of the minimum heat-transfer coefficient and the corresponding time for each pair of 
plates ~, Z3 and ~2, Z4 are identical, whereas during the transition from the first to the 

second pair of plates (~/~*)min decreases and mmin increases marginally. When T > mmin, the 
local heat-transfer coefficient increases monotonically to its steady-state values. 

Starting from a certain time (the lower its value, the larger the value of ~), curves 
of local heat transfer coefficients for each of the above-mentioned pairs of plates diverge 
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and subsequently the heat-transfer characteristics of each plate are different. 

The distribution of steady-state heat-transfer coefficients along the plate length is 
given in Fig. 4. Steady-state heat-transfer coefficients in the first segment ({~ ~*) of 
the plates ~i and ~2 are close not only to each other but also to heat-transfer coefficients 
at the same points of continuous plates Z3 and ~4. In the second segment of segmented plates 

the distributions of heat-transfer coefficients differ from each other and also from the dis- 
tribution of heat-transfer coefficients in the same segment of the continuous plate. Thus, 
when {* = 0.5 (continuous curves) the heat-transfer coefficient behind the point ~ = <* for 
the segment plate ZI increases rapidly, attains a maximum, and subsequently decreases mono- 
tonically. For the segmented plate ~2, the heat-transfer coefficient decreases rapidly be- 
hind the point ~ = ~*. Analogous distribution of heat transfer coefficients along the length 
of the segmented plates ~i and ~2 occurs even at other ~* (<* = 0.2 is indicated by dash-dot 
lines and ~* = 0.8 by dashed lines). With an increase in ~* the value of the maximum heat 
transfer coefficient on the plate ZI decreases and for the plant Z2 a slower decrease in heat 
transfer coefficient is observed. 

The above-described nature of the distribution of heat transfer coefficient along the 
length of the segmented plate is explained by a sharp change in the temperature gradient in 
the plate at the location of the discontinuity in thermophysical properties. This leads to 
a restructuring of temperature profiles in the boundary layer downstream of the point where 
there is a sudden change in the thermophysical properties, expressed by a sharp increase in 
the heat-transfer coefficient for the plate ~i and a decrease for the plate Z2. 

The nature of the steady-state distribution of the heat-transfer coefficient along the 
surface of the body whose thermophysical properties vary sharply along the flow differs 
qualitatively from similar distributions for multilayered bodies whose thermophysical prop- 
erties vary sharply in a direction normal to the flow. In the latter case, as shown in [18], 
from a solution of the conjugate problem of steady-state heat transfer with transverse flow 
past a two-layered cylinder, the curve for heat transfer coefficient is located between 
similar curves obtained for continuous cylinders whose thermophysical properties are iden- 
tical for each layer. This makes it possible to obtain, on the basis of the solution to the 
continuous body problem, the upper and lower bounds for the heat transfer coefficient of 
multilayered bodies, which is not possible according to Fig. 4 for bodies segmented in the 
direction of flow. 
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FLOW STRUCTURE NEAR THE TRAILING EDGE OF A PLATE 

V. V. Bogolepov UDC 532.526.011:518.5 

Solutions were obtained in [1-3] for the vicinity of the trailing edge of a plane plate 
at high but precritical Reynolds numbers Reo, calculated with the plate length 7 and inci- 
dent flow parameters, for subsonic and supersonic external flows, which describe the motion 
in a transition region of extent x ~ 0(~ Re$3/s) between the known Blasius flow on the plane 
plate and the flow in the wake [4]. These solutions have a singularity in the wake behind 
the plate, which can be overcome by the use of numerical methods. The presence of this sin- 
gularity indicates the need to study the flow in the region x < ~ Re73/s. 

The present study will use the method of combined asymptotic expansions as Reo § ~ to 
study the flow near the trailing edge of a plate within the region 7Re73/~ < x < ~Re73/8. It 
is found that at such lengths in the region near the plate a "compensation" flow regime is 
realized [5], wherein the solutions of [1-3] are valid for the rear edge of the plate, and a 
sinzularity of the former type exists in the wake. It is shown that in the singular region 
at x ~ O(7Re73/4), in a first approximation the flow may be described by the Navier-Stokes 
equations for an incompressible liquid. Numerical solutions are obtained for a thin plate 
and a thick plate over a wide range of local Reynolds number Re = 0-i00. Flow line patterns, 
detachment zone characteristics, and gas dynamic flow function distributions over the sur- 

face of the bodies are presented. 

i. In constructing the solutions of [1-3] to evaluate flow functions in the narrow re- 
gion near the surface of the plate, it was assumed that the flow functions change in propor- 
tion to distance from the plate surface, that the flow was viscous, and that the discontinuity 
in boundary conditions at the trailing edge of the plate produced nonlinear perturbations of 
the flow functions. Then, using the equations of motion of the liquid, we easily obtain 

~ x l / ~ , . u ~ - - . ~ x  -l/a, A p e x  2/3, , 6 ~ e x  11~. (1. t)  

Here and below we will use dimensionless variables; for this purpose all linear dimen- 
sions are referred to 7, pressure and enthalpy to poU~ and u~, respectively; the remaining 
flow functions are referred to their values in the unperturbed incident flow; 6 is the thick- 

ness of the mixing layer behind the plate edge; e = Re7 @2. 

In the flow under consideration the origin of mixing layer formation x = 0 is fixed, 
and so Eq. (i.i) describes a singularity immediately behind the trailing edge of the plate. 
Equation (i.i) is complemented by the conditions of interaction in the layer near the plate 
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